Examination: Securities Analysis (1799) Winter Semester 2003/04

Examiner: Prof. Dr. Peter Reichling

The following aids can be used: non-programmable pocket calculator

This examination comprises 5 problems. All of them are to be solved.

EXAMINATION QUESTIONS:

Problem 1. (20 points)

a) You have the following data on spot and forward rates, r and f respectively, which are compounded annually:

Time horizon	Rates	1 40
$r_{0,1}$	4.50%	
$f_{1,2}$	5.00%	
$f_{2,3}$	6.25%	

Construct the term structure of interest rates from the data above and determine its type.

- b) What is the forward rate $f_{l,3}$, i.e. the forward rate on a two-year loan starting in one year?
- c) Use your results from (a) to value a bond with a coupon rate of 5% paid annually, €100 face value, and three years remaining to maturity.
- d) Is there an arbitrage opportunity between the following two bonds:

	Maturity	Coupon	Price
Coupon bond 1	2 years	6.00%	102.40
Coupon bond 2	2 years	4.00%	98.61

Which bond is priced incorrectly and what is its correct price?

e) What is a pure yield curve? How can it be derived on the basis of coupons bonds? Explain briefly!

Problem 2. (20 points)

The term structure is flat at 6% p.a.

- a) Compute the Macaulay duration of a 2-year bond with a coupon rate of 8% paid semiannually.
- b) Compute the Macaulay duration of a 3-year bond with a coupon rate of 10% paid annually.
- c) Consider a fixed-income portfolio. The current value of this portfolio is €80M, of which €25M is in the 2-year bond and €55M in the 3-year bond. Using duration approximation, compute the new value of the portfolio if interest rate falls by 50bps.

Problem 3. (30 points)

Consider two stocks, which have the following characteristics:

	μ_{i}	σ_{i}
Stock A	13%	25%
Stock B	8%	15%
$\rho_{A,B}$	0.3	

- a) Which fractions of the stocks are contained within the minimum variance portfolio?
- b) Compute the expected return and the standard deviation of the tangent portfolio. (Consider the case when an investor can borrow and lend at the risk-free interest rate of 5%).

Problem 4. (15 points)

Consider the following table:

	μ_{ij}	σ
Market	13%	16%
Risk-free	1%	0%
Stock A	20.2%	32%
Stock B	12.4%	18%

- a) Assuming CAPM holds, calculate the betas for the risk-free security, the market portfolio, and stocks A and B. (Note: if the beta can be determined from CAPM theory, you need not show any
- b) Define the terms systematic and nonsystematic risk. Quantify the risks for risk-free as well as for risky securities and the market.
- c) Draw the Capital Market Line (CML) and the Security Market Line (SML). Be sure to place on each graph appropriate values of risk-free security, the market portfolio, and the stocks.

Problem 5. (15 points)

Use the data listed below to answer the following questions.

Asset	μ	σ
Market	14%	18%
Fortune Fund	19%	24%

Covariance of the Fortune Fund with the market is $\sigma_{F,M}$ =0.05184. Risk-free rate is 2.0%.

- a) Calculate the Sharpe, Treynor, and Jensen measures for the Fortune Fund and the market portfolio. Did the Fortune Fund outperform or underperform the market?
- b) Are the ratings consistent across all measures? Explain briefly!