Examiner: Prof. Dr. J. Weimann Winter 2007/2008

Instructions:

- Please answer all five questions.
- Use of non-programmable calculators is allowed.
- Please put your name on all sheets.
- Please hand in all exam materials.

Question 1

Consider the following game with imperfect information:

		Player B				
		b_1	b_2			
A	a_1	2(1+k), 2(1+k)	1, 1			
	a_2	1, 1	2, 3			

- a) For what values of k is the game a prisoner's dilemma?
- b) Why is the game *no* prisoner's dilemma for k = 0?
- c) Why is the game *no* prisoner's dilemma for k = 4?

Question 2

Consider the following game in simultaneous moves.

		player B				
		b_1	b_2	b_3		
player A	a_1	100, 2	0, 0	-100, -100		
	a_2	-100, -100	1, 0	100, 2		

- a) Which of player B's strategies, if any, is dominated?
- b) Which of player B's strategies, if any, is dominant?
- c) Find the pure strategy Nash equilibria.

Question 3 Consider the following strategic form.

		player B				
		m_1	m_2	m_3	m_4	
player A	E	-10, 0	-10,0	40, 50	40, 50	
	\overline{F}	0.300	0.300	0. 300	0.300	

- a) Write down the complete strategy space by player B.
- b) Write down all Nash Equilibria (if any).

c) Write down all subgame perfect Nash Equilibria (if any).

Question 4

Figure 1 gives the reaction curves of two players, each indicating the best response to the action of the respective opponent.

- a) Copy the figure to your paper and indicate the locations of all Nash equilibria.
- b) Copy the figure again. Given the assumption, both players follow standard myopic best response dynamics, analyze if these dynamics if starting in point A will lead to one of the equilibria you found. (Note: Three time steps should be sufficient.)
- c) Copy the figure again. Given the assumption, both players follow standard myopic best response dynamics, analyze if these dynamics if starting in point *B* will lead to one of the equilibria you found. (Note: Three time steps should be sufficient.)

Figure 1: Stable or Not?

Question 5

Consider a linear version of the Tullock model of rent seeking. Strategies by player i are investment levels x_i . Payoff to i is given by

$$\pi_i = \frac{x_i}{\sum_{j=1}^n x_j} V - x_i,$$

where V is the value of the rent the n players are seeking.

- a) Derive the individual reaction function for player i.
- b) Find the (symmetric) Nash equilibrium.