**Examination:** 

1928 - Derivatives

Winter Term 2007/2008

Examiner:

Prof. Dr. Peter Reichling

Time available: 60 minutes

Aids permitted: non-programmable pocket calculators; English dictionaries without any

markings.

The examination is comprised of three problems. All of them are to be solved. Good luck!

## **Examination Questions (60 Points Total):**

## **Problem 1 (Binomial Model – 21 Points)**

A stock price quotes currently at \$50 per share and can either rise by 8% or fall by 18% (per period) within the next two periods. The (discretely compounded) risk-free interest rate is 5% p.a.

- a) Using a binomial tree, show the possible stock price development. (2 points)
- b) Determine the current value of an American put option with a strike price of \$45 and a maturity of two months. Demonstrate the possible option price development with the help of a binomial tree. (7 points)
- c) Assume that the put option you have considered in part b) is of a European type and has a maturity of one month. Calculate the theoretical price of this option. (4 points)
- d) Suppose that a European put option with the strike price of \$45 and a maturity of one month can be purchased at the market for \$3. With the help of an arbitrage table, demonstrate how to execute an arbitrage opportunity in order to receive profit today. (8 points)

## **Problem 2 (Black-Scholes Model – 30 Points)**

A stock has a current price of \$70 per share and a volatility of 25%. The (discretely compounded) risk-free interest rate equals 3.562% p.a.

- a) Within the framework of the Black-Scholes model determine the price, the delta, and the gamma of a European put as well as a European call option with an exercise price of \$68 and maturity of three months. (11 points)
- b) Check if the lower bound for European put and call options is violated. If so, demonstrate how to execute an arbitrage opportunity in this case. (2 points)
- c) Suppose you have a short position in 100 call options and 50 put options. What would you do to protect this portfolio against a small change in the price of the underlying asset? Which position (long/short) and in how many stocks would you take? (7 points)

d) Suppose that, having the same portfolio like in part c), you anticipate a large change in the stock price. Is this portfolio still protected? If not, show what compositional adjustment should be made. Would your portfolio still be delta-neutral? If not, show what adjustment should be made. (10 points)

## **Problem 3 (Trading Strategies – 9 Points)**

- a) A call with a strike price of \$60 has a current price of \$6. A put with the same price and expiration date has a current price of \$4. Sketch a payoff profile of a long straddle. (4 points)
- b) Construct a table that shows the profit from the strategy in a). For what range of stock prices would it lead to a loss? (5 points)

Distribution Function for the Standard Normal Distribution for Non-Negative Arguments

| X   | 0.00                   | 0.01   | 0.02   | 0.03   | 0.04   | 0.05   | 0.06   | 0.07   | 0.08   | 0.09   |
|-----|------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 0.0 | 0.5000                 | 0.5040 | 0.5080 | 0.5120 | 0.5160 | 0.5199 | 0.5239 | 0.5279 | 0.5319 | 0.5359 |
| 0.1 | 0.5398                 | 0.5438 | 0.5478 | 0.5517 | 0.5557 | 0.5596 | 0.5636 | 0.5675 | 0.5714 | 0.5753 |
| 0.2 | 0.5793                 | 0.5832 | 0.5871 | 0.5910 | 0.5948 | 0.5987 | 0.6026 | 0.6064 | 0.6103 | 0.6141 |
| 0.3 | 0.6179                 | 0.6217 | 0.6255 | 0.6293 | 0.6331 | 0.6368 | 0.6406 | 0.6443 | 0.6480 | 0.6517 |
| 0.4 | 0.6554                 | 0.6591 | 0.6628 | 0.6664 | 0.6700 | 0.6736 | 0.6772 | 0.6808 | 0.6844 | 0.6879 |
|     |                        |        |        |        |        |        |        |        |        |        |
| 0.5 | 0.6915                 | 0.6950 | 0.6985 | 0.7019 | 0.7034 | 0.7088 | 0.7123 | 0.7157 | 0.7190 | 0.7224 |
| 0.6 | 0.7257                 | 0.7291 | 0.7324 | 0.7357 | 0.7389 | 0.7422 | 0.7454 | 0.7486 | 0.7517 | 0.7549 |
| 0.7 | 0.7580                 | 0.7611 | 0.7642 | 0.7673 | 0.7704 | 0.7734 | 0.7764 | 0.7794 | 0.7823 | 0.7852 |
| 0.8 | 0.7881                 | 0.7910 | 0.7939 | 0.7967 | 0.7995 | 0.8023 | 0.8051 | 0.8078 | 0.8106 | 0.8133 |
| 0.9 | 0.8159                 | 0.8186 | 0.8212 | 0.8238 | 0.8264 | 0.8289 | 0.8315 | 0.8340 | 0.8365 | 0.8389 |
|     |                        |        | ×      |        |        |        |        |        |        |        |
| 1.0 | 0.8413                 | 0.8438 | 0.8461 | 0.8485 | 0.8508 | 0.8531 | 0.8554 | 0.8577 | 0.8599 | 0.8621 |
| 1.1 | 0.8643                 | 0.8665 | 0.8686 | 0.8708 | 0.8729 | 0.8749 | 0.8770 | 0.8790 | 0.8810 | 0.8830 |
| 1.2 | 0.8849                 | 0.8869 | 0.8888 | 0.8907 | 0.8925 | 0.8944 | 0.8962 | 0.8980 | 0.8997 | 0.9015 |
| 1.3 | 0.9032                 | 0.9049 | 0.9066 | 0.9082 | 0.9099 | 0.9115 | 0.9131 | 0.9147 | 0.9162 | 0.9177 |
| 1.4 | 0.9192                 | 0.9207 | 0.9222 | 0.9236 | 0.9251 | 0.9265 | 0.9279 | 0.9292 | 0.9306 | 0.9319 |
|     | NULL PER DICK NACE AND |        |        |        |        |        |        |        |        |        |
| 1.5 | 0.9332                 | 0.9345 | 0.9357 | 0.9370 | 0.9382 | 0.9394 | 0.9406 | 0.9418 | 0.9429 | 0.9441 |
| 1.6 | 0.9452                 | 0.9463 | 0.9474 | 0.9484 | 0.9495 | 0.9505 | 0.9515 | 0.9525 | 0.9535 | 0.9545 |
| 1.7 | 0.9554                 | 0.9564 | 0.9573 | 0.9582 | 0.9591 | 0.9599 | 0.9608 | 0.9616 | 0.9625 | 0.9633 |
| 1.8 | 0.9641                 | 0.9649 | 0.9656 | 0.9664 | 0.9671 | 0.9678 | 0.9686 | 0.9693 | 0.9699 | 0.9706 |
| 1.9 | 0.9713                 | 0.9719 | 0.9726 | 0.9732 | 0.9738 | 0.9744 | 0.9750 | 0.9756 | 0.9761 | 0.9767 |