Final Examination: 20298

Advanced Methods in International Marketing

Winter Semester 2012 / 2013 Dr. John E. Brennan

You are allowed to use a non-programmable calculator (in accordance with the instructions given by the examination office) and a translating dictionary from your native language to English (without any notes written into it). All of the \underline{six} (6) examination questions must be answered. This examination consists of \underline{three} (3) pages and must be completed within 60 minutes.

Question 1: <u>NOTE:</u> This problem MUST be solved using the table approach presented in this lecture course. Other solution methods will not be accepted.

The strategic planning department of a major oil company in London is studying the relationship between crude oil prices and the political situation in the Middle East. The discrete stochastic variable $Y = y_j$, j = 1, 2, indicates the crude oil price level, $y_1 = \text{high}$ and $y_2 = \text{moderate}$. The discrete stochastic variable $X = x_i$, i = 1, 2, indicates the political climate, $x_1 = \text{war}$ and $x_2 = \text{peace}$. The likelihood of high crude oil prices in the future is considered to be 40%. If a war does happen, then there will be a 75% chance of high oil prices. If moderate oil prices occur, then the likelihood of a peaceful political climate is thought to be 95%.

			_	
Ç;	ts	rat	·i	an

		X		
		War	Peace	
v	High			
1	Moderate			
		-		1.0

Two Scenarios $(X \mid Y = y_j)$

Σ	ζ	
War	Peace	
		1.0
		1.0

Bayesian Multiple Table

	Two Scenarios $(Y X = x_i)$					
Y	High					
	Moderate					
		1.0	1.0			

		X	
		War	Peace
V	High		
	Moderate		

- a. What is the likelihood of a situation where there is a high oil price and the political situation is that of peace?
- b. Considering the peace scenario, what is the likelihood of moderate oil prices?
- c. Under the high oil price scenario, what is the likelihood of war?
- d. Calculate the number in the Bayesian Multiple Table for $X = x_1$ and $Y = y_1$.

Please turn to page 2

Question 2: Bayes' Theorem provides a logical framework for analyzing the human thought process and shows the usefulness of information in the assessment of future outcomes.

Pr
$$(Y = y_i \mid X = x_i) = \delta$$
 Pr $(Y = y_i)$, where $\delta = Pr(X = x_i \mid Y = y_i) / Pr(X = x_i)$.

- a. Using Question 1 as an example: What are the two prior probabilities?
- b. Again using Question 1: What are the posterior probabilities for $X = x_1$?
- c. Explain in detail when the Bayesian Multiple is equal to one, $\delta = 1$.

Question 3: Below is the situation for a pair of stochastic concepts $Y = y_j$, j = 1, 2, 3, and $X = x_i$, for i = 1, 2, 3. This situation has nine (9) possibilities and the numbers in the matrix indicate the likelihood of these occurrences.

$Y \setminus X$	$x_1 = 1.5$	$x_2 = 3.5$	$x_3 = 5.5$
$y_1 = 0.4$	0.045	0.080	0.045
$y_2 = 0.6$	0.120	0.120	0.120
$y_3 = 0.8$	0.085	0.300	0.085

- a. Compute E(Y).
- b. Compute $E(X \mid Y=y_2)$.
- c. Compute C(X, Y).
- d. Are the concepts X and Y stochastically independent?

Question 4: When the range of a stochastic variable, $Y = y_j$, where $y_j \ge a$, is restricted, we say that the random variable is truncated at point a. Consider a discrete random variable, $Y = y_j$, j = 1, 2, 3.

$Y=y_j$	$y_1 = 2$	$y_2 = 4$	$y_3 = 6$	$y_4 = 8$
Likelihood	1/4	1/4	1/4	1/4

- a. If this stochastic variable is truncated at a = 4 (therefore, $y_j > 4$), what are the truncated probabilities that $y_1 = 2$ and that $y_4 = 8$?
- b. Compute the un-truncated E (Y).
- c. Compute the truncated E (Y $\mid Y=y_i > 4$).
- d. Compute the truncated variance V (Y $\mid Y=y_i > 4$).

Question 5: A negative number can be considered to be a distance to the left from zero.

- a. Is it possible to have a negative covariance? If so, what would it indicate?
- b. Is it possible to have a negative variance? If so, what would it indicate?
- c. Is it possible to have a negative skew coefficient? If so, what would it indicate?

Question 6: Consider a student who is applying for admission at two German universities: the O-v-G-Universität Magdeburg, $M = m_i$, i = 1, 2, with $m_1 = Accepted$ and $m_2 = Rejected$, and at the Martin Luther Universität Halle, $H = h_j$, j = 1, 2, where $h_1 = Accepted$ and $h_2 = Rejected$. The student believes that there is a likelihood of 60% of being accepted in Halle. There is a 30% likelihood of being accepted in Magdeburg. Given that he/she is rejected by Halle, there is an 80% chance of being rejected by Magdeburg.

Conditional (M | H= h_i)

		M		
		Accept	Reject	$f_2(h_j)$
H	Accept			
	Reject			
	$f_1(m_i)$			1.0

		Accept	Reject	
Н	Accept			1.0
	Reject			1.0

Conditional (H M= m_i)

	·	M	
		Accept	Reject
Н	Accept		
	Reject		
		1.0	1.0

			M	
ſ			Accept	Reject
	Н	Accept		
		Reject		

- a. Given that the student has been accepted in Magdeburg, What is the probability that this student will be rejected in Halle?
- b. What is the likelihood of an acceptance at both universities?
- c. Is the event "accepted in Magdeburg" independent from the event "accepted in Halle"? Explain your answer.

This is the End of the Examination GOOD LUCK!