Dipl.-Math. Karsten Bruckner Otto-von-Guericke-Universität Magdeburg Fakultät für Mathematik

Examination – Statistics I

1	2	3	4	5	Σ

Please note the following:

- The exam consists of 5 problems with a total of 36 questions;
- For each question there are several possible answers. Exactly one of them is correct.
- You get 1 point for every correct answer.
- You get -1/2 points for every incorrect answer.
- You get 0 points for not answering a question.
- You can reach a maximum of **36 points**. For passing the exam a total of **17 points** is sufficient.
- You are allowed to use: Pocket calculators, text books, mathematical and/or statistical tables, manuscripts and notes from lectures and/or exercises.

Problem 1.

Assume that X_1 and X_2 are real-valued continuous random variables. Then

- a) $Var(X_1 + X_2) = Var(X_1) + Var(X_2)$
 - $\hfill\square$ Correct Statement
 - \Box Wrong Statement
- b) $E(X_1 \cdot X_2) \le E(X_1) \cdot E(X_1)$
 - \Box Correct Statement
 - \Box Wrong Statement
- c) $P(X_1 \ge 10, X_2 \ge 10) = P(X_1 \ge 10) + P(X_2 \ge 10) P(\max(X_1, X_2) \ge 10)$ \Box Correct Statement
 - \Box Wrong Statement
- d) $P(X_1 \ge 10) = P(X_1 > 10)$
 - $\hfill\square$ Correct Statement
 - \Box Wrong Statement
- e) $X_1 + X_2$ is also a continuous random variable
 - $\hfill\square$ Correct Statement
 - \Box Wrong Statement

Problem 2.

The time (in minutes) needed to serve a single costumer at a supermarket check-out counter is assumed to follow an exponential distribution. The average service time is 2 minutes.

- a) The parameter of this exponential distribution is given by
 - $\Box 120$ $\Box 2$ $\Box 1/2$
- b) The distribution function of this random service time is given by

$$\Box F(x) = \begin{cases} 1 - \exp(-x/2) & \text{if } x \ge 0\\ 0 & \text{otherwise} \end{cases}$$
$$\Box F(x) = \begin{cases} \exp(-x/2) & \text{if } x \ge 0\\ 0 & \text{otherwise} \end{cases}$$
$$\Box F(x) = 1 - \exp(-2x), \ x \in \mathbb{R} \end{cases}$$

- c) The probability that the service time does not exceed 2 minutes is approximately
 - \Box 0.63
 - \Box 0.51
 - \Box 0.47
- d) The conditional probability that the service will need at least 2 more minutes, given that it already needed at least 3 minutes, is approximately
 - \Box 0.15
 - \Box 0.37
 - \Box 0.28
- e) If the service times of 4 single costumers are independent and follow the same exponential distribution (as above), then the probability that at least one the 4 custumers needs more than $2 \cdot \ln 2$ minutes to be served is exactly given by
 - \Box 0.2135
 - □ 0.9852
 - \Box 0.3439
- f) and the variance of the sum of these 4 service times is equal to
 - $\Box 2$
 - \Box 16
 - $\Box 4$

Problem 3.

The joint distribution of a discrete bivariate random vector (X_1, X_2) is given by the following table, which contains the probabilities $P(X_1 = x_1, X_2 = x_2)$ for $x_1 = 0, 2, 4$ and $x_2 = 0, 1, 2$:

	0	1	2
0	1/12	0	0
2	0	1/3	1/3
4	0	0	1/4

- a) The probability $P(X_1 = 2)$ is given by
 - $\Box 3/4$
 - $\Box 2/3$
 - $\Box 1/12$
- b) The conditional probability $P(X_2 = 2 | X_1 = 2)$ is given by
 - \Box 1/3
 - $\Box 2/3$
 - \Box 1/2
- c) The expected value $E(X_1)$ is given by
 - \Box 1
 - $\Box 1/12$
 - $\Box 7/3$
- d) The variance $Var(X_2)$ is given by
 - $\Box 5/12$
 - $\Box 1/9$
 - $\Box 2/3$
- e) The expected value $E(X_1 \cdot X_2)$ is given by
 - \Box 5/2
 - \Box 4
 - $\Box 2$
- f) The covariance $Cov(X_1, X_2)$ is given by
 - \Box 1/4
 - \Box 1/2
 - \Box 1

- g) The random variables X_1 and X_2 are
 - $\hfill\square$ positive correlated
 - \Box independent
 - $\Box\,$ uncorrelated, but not independent
- h) The variance $Var(X_1 + X_2)$ satisfies
 - $\Box \operatorname{Var}(X_1 + X_2) = \operatorname{Var}(X_1) + \operatorname{Var}(X_2)$
 - $\Box \operatorname{Var}(X_1 + X_2) > \operatorname{Var}(X_1) + \operatorname{Var}(X_2)$
 - $\Box \operatorname{Var}(X_1 + X_2) = 2 \cdot \operatorname{Var}(X_1)$