Examination - Statistics I

1	2	3	4	5	Σ

Please note the following:

- The exam consists of 5 problems with a total of 36 questions;
- For each question there are several possible answers. Exactly one of them is correct.
- You get 1 point for every correct answer.
- You get $-1 / 2$ points for every incorrect answer.
- You get 0 points for not answering a question.
- You can reach a maximum of $\mathbf{3 6}$ points. For passing the exam a total of $\mathbf{1 7}$ points is sufficient.
- You are allowed to use: Pocket calculators, text books, mathematical and/or statistical tables, manuscripts and notes from lectures and/or exercises.

Problem 1.

Assume that X_{1} and X_{2} are real-valued continuous random variables. Then
a) $\operatorname{Var}\left(X_{1}+X_{2}\right)=\operatorname{Var}\left(X_{1}\right)+\operatorname{Var}\left(X_{2}\right)$Correct StatementWrong Statement
b) $E\left(X_{1} \cdot X_{2}\right) \leq E\left(X_{1}\right) \cdot E\left(X_{1}\right)$Correct StatementWrong Statement
c) $P\left(X_{1} \geq 10, X_{2} \geq 10\right)=P\left(X_{1} \geq 10\right)+P\left(X_{2} \geq 10\right)-P\left(\max \left(X_{1}, X_{2}\right) \geq 10\right)$Correct StatementWrong Statement
d) $P\left(X_{1} \geq 10\right)=P\left(X_{1}>10\right)$Correct StatementWrong Statement
e) $X_{1}+X_{2}$ is also a continuous random variableCorrect StatementWrong Statement

Problem 2.

The time (in minutes) needed to serve a single costumer at a supermarket check-out counter is assumed to follow an exponential distribution. The average service time is 2 minutes.
a) The parameter of this exponential distribution is given by120$1 / 2$
b) The distribution function of this random service time is given by
$\square F(x)= \begin{cases}1-\exp (-x / 2) & \text { if } x \geq 0 \\ 0 & \text { otherwise }\end{cases}$
$F(x)= \begin{cases}\exp (-x / 2) & \text { if } x \geq 0 \\ 0 & \text { otherwise }\end{cases}$
$\Rightarrow F(x)=1-\exp (-2 x), x \in \mathbb{R}$
c) The probability that the service time does not exceed 2 minutes is approximately0.630.510.47
d) The conditional probability that the service will need at least 2 more minutes, given that it already needed at least 3 minutes, is approximately0.150.370.28
e) If the service times of 4 single costumers are independent and follow the same exponential distribution (as above), then the probability that at least one the 4 custumers needs more than $2 \cdot \ln 2$ minutes to be served is exactly given by0.21350.98520.3439
f) and the variance of the sum of these 4 service times is equal to

Problem 3.

The joint distribution of a discrete bivariate random vector $\left(X_{1}, X_{2}\right)$ is given by the following table, which contains the probabilities $P\left(X_{1}=x_{1}, X_{2}=x_{2}\right)$ for $x_{1}=0,2,4$ and $x_{2}=0,1,2$:

	0	1	2
0	$1 / 12$	0	0
2	0	$1 / 3$	$1 / 3$
4	0	0	$1 / 4$

a) The probability $P\left(X_{1}=2\right)$ is given by3/4$2 / 3$$1 / 12$
b) The conditional probability $P\left(X_{2}=2 \mid X_{1}=2\right)$ is given by$1 / 3$$2 / 3$$1 / 2$
c) The expected value $E\left(X_{1}\right)$ is given by1$1 / 12$7/3
d) The variance $\operatorname{Var}\left(X_{2}\right)$ is given by5/12$1 / 9$$2 / 3$
e) The expected value $E\left(X_{1} \cdot X_{2}\right)$ is given by$5 / 2$42
f) The covariance $\operatorname{Cov}\left(X_{1}, X_{2}\right)$ is given by$1 / 4$$1 / 2$1
g) The random variables X_{1} and X_{2} arepositive correlatedindependentuncorrelated, but not independent
h) The variance $\operatorname{Var}\left(X_{1}+X_{2}\right)$ satisfies$\operatorname{Var}\left(X_{1}+X_{2}\right)=\operatorname{Var}\left(X_{1}\right)+\operatorname{Var}\left(X_{2}\right)$$\operatorname{Var}\left(X_{1}+X_{2}\right)>\operatorname{Var}\left(X_{1}\right)+\operatorname{Var}\left(X_{2}\right)$$\operatorname{Var}\left(X_{1}+X_{2}\right)=2 \cdot \operatorname{Var}\left(X_{1}\right)$

